

For Automation Geeks| By Bharat Kakkar

WWW.TECHNODIVINE.COM
REFACTORING KEYWORD DRIVEN

APPROACH WITH FUNCTIONAL POINTERS

Copyright


 2012-2013, www.Technodivine.com

Although, a developer always tries to write best solution in the code, refactoring is

something, which can never be ignored.

A problem may have multiple solutions. However, implementing the best is always on

priority. Refactoring is a technique to restructure the code to have best possible solution

implemented. Thus, if you are in process of maintaining the code by refactoring the same,

one of the best practices is to find a smallest way with minimal maintenance.

Let us discuss one of those solutions here, which may help you to develop such an

implementation. Specially, if you have a keyword driven framework with function names as

your keywords, you use a lot many select cases.

Let us consider one of the aforesaid examples wherein you have a situation to call a

specified function based on a conditional statement (function names are your keywords and

user specifies which function to be called in an external datasheet). One of the alternatives

to this solution will be to have a select statement implemented, however what if your

conditions are increasing gradually or you are adding more functions to your framework and

these function are to be called based certain condition (user selection in our case). So, every

time you introduce a new function you need to update the select condition. Additionally, for

every new condition you will be adding three lines of code

1. Case <value>

2. Function call

3. Break

Now, think about the solution which will not need any updates to be made in the code for

every new keyword and all you need to do is to add new function (And that’s it).

The solution is “Functional Pointers”. Let us first understand what functional pointer is?

Functional pointers are reference to a memory location where a piece of code is stored or a

function stored in your application/script which may be executed on the fly.

Note:

• When a functional pointer is called and the code stored within the memory location

it is called direct functional pointer

• When a functional pointer is called and the code stored within the Application/script

it is called In-direct functional pointer

Copyright


 2012-2013, www.Technodivine.com

Now, let me show how we can implement “functional pointers” in VBScript.

This would be done using getref function

Definition: It points to the address of a procedure to be executed. Returns a reference to a

procedure that can be bound to an event

Implementation:

'Getting the values from user
FunctionParameter1=InputBox("Enter the Parameter value (valid Values
TestFunction/TestFunctionOne", "Technodivine.com Example","10")
FunctionName=InputBox("Enter the Parameter value", "Technodivine.com
Example","TestFunction")

'Calling function based on user input
Set FuntionPointer=getref(FunctionName)
Call FuntionPointer (FunctionParameter1)

'Function defination
Function TestFunction(FunctionParameter1)
 msgbox "Called TestFunction with parameter value : "& FunctionParameter1
End Function

Function TestFunctionOne(FunctionParameter1)
 msgbox "Called TestFunctionOne with parameter value : "&
FunctionParameter1

End Function

Applying Error handling similar to case default (in our case, user call a function which was

never defined):

If FuntionPointer Is Nothing Then

 MsgBox FunctionName &" is not defined!" 'FunctionExists = False

End if

 OR

If Err.number <> 0 Then

 MsgBox FunctionName &" is not defined!" 'FunctionExists = False

End If

Write one of the above codes before you call the functional Pointe, i.e. Call

FuntionPointer (FunctionParameter1).

